• MIT automates quantitative analysis of DNA comets
    Quantitative analysis of DNA comets can be automated with a microgrid from MIT researchers

Electrophoretic Separations

MIT automates quantitative analysis of DNA comets

May 05 2010

DNA comets - where healthy and damaged DNA is separated through electrophoresis - have posed a quantitative analysis challenge for three decades.

Comet assaying uses electrophoresis to spread DNA into a comet-like formation on the surface of a gel substrate.

The process works due to the surface charge of particles, which causes them to move differently when an external electric field is applied.

Damaged DNA typically moves further than healthy DNA, creating a formation similar to a comet's tail.

However, there has previously been no way to automate the quantitative analysis of the results, making for a time- and labour-consuming process.

Now, Massachusetts Institute of Technology (MIT) scientists have created a microscopic patterning grid for the resultant comet, allowing individual areas to be labelled.

In turn, this allows for the process of analysis to be automated, removing the labour from the procedure and accelerating the time taken to achieve a result.

"The technology could offer a new approach for epidemiologists to detect dangerous environmental exposures long before they cause cancer," the researchers claim.

Digital Edition

Chromatography Today - Buyers' Guide 2022

October 2023

In This Edition Modern & Practical Applications - Accelerating ADC Development with Mass Spectrometry - Implementing High-Resolution Ion Mobility into Peptide Mapping Workflows Chromatogr...

View all digital editions

Events

EuCheMS Chemistry Congress

Jul 07 2024 Dublin, Ireland

HPLC 2024

Jul 20 2024 Denver, CO, USA

ICMGP 2024

Jul 21 2024 Cape Town, South Africa

ACS National Meeting - Fall 2024

Aug 18 2024 Denver, CO, USA

JASIS 2024

Sep 04 2024 Chiba, Tokyo, Japan

View all events