• Understanding the Difference Between Retention Time and Relative Retention Time

Autosamplers

Understanding the Difference Between Retention Time and Relative Retention Time

Retention Time

Retention time (RT) is a measure of the time taken for a solute to pass through a chromatography column. It is calculated as the time from injection to detection.

The RT for a compound is not fixed as many factors can influence it even if the same GC and column are used. These include:

  • The gas flow rate
  • Temperature differences in the oven and column
  • Column degradation
  • Column length

These factors can make it difficult to compare retention times. Even if you use the same GC just a few days apart, there can be small differences in the retention time of a compound.

Qualitative Analysis

Qualitative analysis relies on comparing the retention times of the peaks in an unknown sample with those of known standards. If the retention time of a peak in the unknown sample is the same as the standard then a positive identification can be made.

Peak Number

Standard Identification

Standard

RT / minutes

Sample X

RT / minutes

Sample Y

RT / minutes

1

   

1.33

1.27

2

A

1.45

1.44

1.39

3

B

3.07

3.06

2.96

4

   

3.34

3.26

The results from three GC runs are shown in the table. The Standard and Sample X were run consecutively. Sample Y was run a few days later. From the retention times we can state, quite reasonably, that Sample X contains components A and B. However, no positive identification could be made for Sample Y based on a comparison of the retention times. The peak in Y with a retention time of 1.39 minutes could be component A, or it could be the component in X that elutes at 1.33 minutes.

A method that can reduce the effect of small changes in GC parameters would be beneficial for qualitative analysis.

Relative Retention Time

The use of the relative retention time (RRT) reduces the effects of some of the variables that can affect the retention time. RRT is an expression of a sample’s retention time relative to the standard’s retention time.

RRT = Standard RT / Sample RT

To measure RRT, a sample matrix is made up by mixing the sample with an internal standard (IS). Using the data from before, but this time with an IS:

Peak Number

Standard Identification

Standard

RT / minutes

Sample X

RT / minutes

Sample Y

RT / minutes

1

   

1.33

1.28

2

A

1.45

1.44

1.39

3

IS

2.90

2.89

2.78

4

B

3.07

3.06

2.96

5

   

3.34

3.21

From the data we can calculate the RRT of the peaks in X and Y.

Peak

Standard RRT

Sample X RRT

Sample Y RRT

A

RRT = 2.90/1.45 = 2.00

RRT = 2.89/1.44 = 2.01

RRT = 2.78/1.39 = 2.00

B

RRT = 2.90/3.07 = 0.94

RRT = 2.89/3.06 = 0.94

RRT = 2.78/2.96 = 0.94

From the RRT data, components A and B can be identified in both of the samples.

The use of retention time as a qualitative tool is described in the article: Volatile Organic Compound Determination in Health-related Research: A Review.

Image Source


Digital Edition

Chromatography Today - Buyers' Guide 2022

October 2023

In This Edition Modern & Practical Applications - Accelerating ADC Development with Mass Spectrometry - Implementing High-Resolution Ion Mobility into Peptide Mapping Workflows Chromatogr...

View all digital editions

Events

SCM-11

Jan 20 2025 Amsterdam, Netherlands

Medlab Middle East

Feb 03 2025 Dubai, UAE

China Lab 2025

Feb 05 2025 Guangzhou, China

PITTCON 2025

Mar 01 2025 Boston, MA, USA

H2 Forum

Mar 04 2025 Berlin, Germany

View all events