• Quantitative analysis hints at biological cost of rifampicin resistance in N meningitidis
    Quantitative analysis of meningococcus proteins suggest drug-resistant strains spread less easily

Electrophoretic Separations

Quantitative analysis hints at biological cost of rifampicin resistance in N meningitidis

Neisseria meningitidis has been examined using quantitative analysis through both two-dimensional electrophoresis and mass spectrometry to determine the impact of resistance to the drug rifampicin on its ability to spread.

According to researchers from Italy's Istituto Superiore di Sanita and the Sapienza University of Rome, drug resistance has long been suggested as having a biological cost associated with it.

Through this, they suggest in BMC Microbiology that some strains of virus can be resistant to treatment, yet less likely to spread throughout the general population than their non-resistant counterparts.

In quantitative analysis of N meningitidis, the scientists found 23 differently expressed proteins in resistant strains, compared with the normal population.

With multiple differently express proteins impacting on metabolism, they argue that the ability of a given strain to penetrate the population may be impaired.

BMC Microbiology covers research into micro-organisms, parasites and viruses associated with the spread of infectious disease.

Digital Edition

Chromatography Today - Buyers' Guide 2022

October 2023

In This Edition Modern & Practical Applications - Accelerating ADC Development with Mass Spectrometry - Implementing High-Resolution Ion Mobility into Peptide Mapping Workflows Chromatogr...

View all digital editions

Events

SCM-11

Jan 20 2025 Amsterdam, Netherlands

Medlab Middle East

Feb 03 2025 Dubai, UAE

China Lab 2025

Feb 05 2025 Guangzhou, China

PITTCON 2025

Mar 01 2025 Boston, MA, USA

H2 Forum

Mar 04 2025 Berlin, Germany

View all events