
Introduction
In the world of farming, weeds are a 

problem. If left untreated, the overgrowth 

can reduce yields. Farmers and growers 

have turned to modern synthetic herbicides 

such as glyphosate for help. Recent industry 

news has highlighted that the extensive and 

consistent use of glyphosate raised health 

concerns and has even spawned glyphosate-

resistant weeds [1].

Because of the glyphosate-resistant weeds, 

farmers and growers are using alternative 

acid herbicides (AcHs), such as the well-

characterised 2,4-dichlorophenoxyacetic 

acid (2,4-D), dicamba, triclopyr and others, 

to help destroy the persistent threat [2]. 

However, like with glyphosate, health 

concerns have arisen [3].

The problem with dicamba is that it does not 

always stay where it is applied. The herbicide 

can migrate via spray drift from the fields 

where it is intentionally applied, to nearby 

fields and farms, damaging crops that 

have not been engineered with dicamba-

tolerant genes. Research by the University 

of Missouri Extension, USA found that the 

migration has widely damaged non-resistant 

crops and other plants [4]. 

Despite complaints and concerns about drift 

across plots during spray application, the 

United States (US) Environmental Protection 

Agency (EPA) ruled in favor of the continued 

use of dicamba [5]. The EPA introduced 

regulations around application patterns 

to help control migration - things like the 

time of day you are allowed to apply and 

the conditions to avoid, such as high winds. 

Nevertheless, AcHs remain a prevalent 

concern in environmental monitoring and 

crop contamination analysis. 

One of the most common analytical 

approaches for AcHs is the EPA Method 

8151: Chlorinated Herbicides by GC Using 

Methylation or Pentafluorobenzylation 

Derivatization [6]. However, the sample 

derivatisation process can be time-

consuming and costly. This limitation is 

driving the need for an alternative method 

to quantify AcHs and metabolites at low 

levels in relevant environmental matrices, 

using liquid chromatography tandem mass 

spectrometry (LC-MS/MS) methods. 

In this study, we have identified three 

primary dicamba metabolites that are 

generated in the environment. 

• 5-OH-dicamba

• 3,6-dichlorosalicylic acid (DCSA) which 

demonstrates a higher persistence in 

the environment than the original parent 

dicamba 

• A secondary metabolite of DCSA, DCGA 

(3,6-dichlorogentisic acid) 

Experimental
GC-MS/MS has historically enabled multiple 

pesticide residues to be screened, but 

LC-MS/MS represents an ideal replacement 
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Understanding the Metabolites

 Figure 1: Major dicamba metabolites are important to monitor. Metabolites of concern are 5 OH dicamba 
and 3,6-dichlorosalicylic acid (DCSA). DCSA is the major degradant in the environment and is more 
persistent in the environment than the parent dicamba. DCSA can further transform into DCGA.
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technology for analysing AcHs and their 

metabolites. It eliminates the need for 

derivatisation and can achieve greater 

sensitivity. A recent literature review of 

chlorophenoxy acid herbicide methods, 

have also shown LC-MS/MS to be a more 

rugged analytical approach [7-8]. 

Acidic functional groups are easy to ionise as 

their conjugate base. While there are several 

new AcHs that are more easily ionised by ESI 

positive modes, this method mainly focuses 

on the legacy AcHs that require negative 

mode electrospray ionisation (ESI−) for high 

sensitivity. 

Recent work [9] presented an LC-MS/MS 

analysis to quantify dicamba, related AcHs 

and the metabolite compounds mentioned 

in real-world agricultural samples - water, 

soil, and soy plant tissue (foliage) samples. 

These samples were collected from 

fields either targeted by or close to AcH 

application in the US Midwest. Samples 

evaluated included: 

•   7 soy foliage samples - Target field 

planted rows, and increasing distances 

from field

•  5 soil samples - 3 from target field, and 2 

from increasing distances

The goal was to demonstrate the sensitivity 

and recovery of the compounds in complex 

matrices. The application note presents 

quantification method performance data 

showing ng/g levels in samples for many 

of these analytes. The dicamba isotopic 

internal standard, d3-dicamba, was 

employed to assess and optimise recovery 

of method performance for both linearity 

and accuracy.

A Phenomenex Kinetex® F5 column (2.6 μm, 

100 x 3 mm) was employed for these highly 

polar, low molecular weight species. This 

is a unique stationary phase that is novel 

for food and environmental analysis. The 

electronegativity of the fluorines means that 

it works well for inherently charged negative 

mode compounds. Strong dipole-dipole and 

ion-dipole interactions are the suspected 

interaction mechanisms. Some of these carry 

an acidic charge, are small and thus poorly 

retained on a more traditional stationary 

phase like a C18. The F5 column does a 

good job of retaining very low molecular 

weight, negatively charged species. A 

flow rate of 0.500 mL/min and a 17-minute 

gradient program (Table 1) provided 

chromatographic resolution for performance 

in complex extract matrices.

Table 1: LC gradient time program.

We defined the known retention time 

values in the acquisition method, in order 

to optimise the cycle time for best peak 

shape for quantification performance. Figure 

2 shows example elution profiles. Mobile 

phases are water and methanol with 0.1% 

formic acid.

For the MS, we used the SCIEX QTRAP® 

6500+ LC-MS/MS System for its sensitivity 

and robustness. The Turbo V™ Ion Source 

operated in negative mode electrospray 

ionisation (ESI) was used for optimal 

ionisation of acidic species. The multiple 

reaction monitoring (MRM) experiment 

monitored two transitions for each analyte 

and we optimised compound-specific 

voltages designated for maximum sensitivity. 

Results
We found that AcH limits of detection 

(LODs) were largely less than <1 ng/mL, with 

some exceptions, including 5-OH-dicamba, 

which had poor sensitivity in comparison to 

some other AcH compounds. To optimise 

the method performance for linearity and 

accuracy, we utilised the isotopically labeled 

d3-dicamba as the internal standard (ISTD) 

for all analytes. Data was processed using 

the SCIEX MultiQuant™ Software. 

Table 2 shows LOD and LOQ values for 

the compound IDs we analysed. You can 

see 2,4-D, dicamba, dichlorprop and new 

metabolites DCGA, DCSA, MCPA, MCPB 

and MCPP. Also note the low limits of 

quantification (LOQ) for these historically 

challenging compounds. The highest LOQs 

are for DCGA and 2-4-DB, which are at 10 

ng/mL. 

The signal-to-noise ratio at 1 ppb, 

demonstrates excellent sensitivity. The 

reproducibility of the isotopic ISTD was 21% 

CV in matrix samples. This value includes 

peaks measured in both soy foliage and 

soil matrices representing excellent method 

reproducibility in matrix (Figure 3).

Time (min) %B

1 40

4 52

12 85

13.5 90

15.5 90

15.6 2

Figure 2: Elution profile of some example AcHs using the Kinetex F5 stationary phase.
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Compound ID LOD  

(ng/mL, in vial) 

LOQ  

(ng/mL, in vial) 

LOQ  

(ng/g, in sample) 

S/N at 1ppb %CV at 1ppb %CV at 

25ppb 

Cal Range 

2,4,-T 0.1 0.25 3.5 132 12% 11% 0.1 - 50 

2,4,5-TP 0.025 0.05 0.7 72 18% 6% 0.025 - 50 

2,4,-D 0.025 0.05 0.7 226 6% 7% 0.05 - 50 

2,4-DB 5 10 140 -- -- 3% 5 - 50 

5OH-Dicamba 1 2.5 35 49 26% 3% 0.5 - 50 

Acifluorfen <0.1 0.1 1.4 17 10% 11% 0.1 - 50 

Bentazon <0.01 <0.01 <0.14 1883 5% 3% 0.1 - 25 

DCGA 5 10 140 -- -- 7% -- 

DCSA 1 2.5 1.4 7 7% 8% 0.05 - 50 

Dicamba 0.25 1 14 25 14% 11% 0.25 - 50 

Dichlorprop 0.025 0.05 0.7 586 2% 5% 0.025 - 50 

MCPA 1 2.5 <0.14 4 1% 3% 0.01 - 100 

MCPB 0.5 1 14 384 6% 2% 0.5 - 50 

MCPP <0.01 <0.01 <0.14 560 3% 3% 0.01 - 100 

Table 2. Data analysis and quantification method performance evaluation for AcHs and metabolites, including sensitivity and reproducibility data.

 Figure 3: 
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Conclusion
Environmental monitoring and crop 

contamination are becoming more critical, 

especially as AcH usage becomes more 

widespread in the agriculture industry. This 

application demonstrates a sensitive and 

efficient quantification method for AcHs, 

including dicamba and its metabolites, in 

a unique set of field samples analysed on 

the SCIEX QTRAP 6500+ System with the 

ExionLC™ AD System and Phenomenex 

Kinetex F5 analytical column. 
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 Figure 3: Spike recovery for dicamba and other AcHs in soil and soy matrices, as well as analytical precision for triplicate injections.
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