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Size-exclusion chromatography (SEC) or gel permeation chromatography (GPC) is frequently used in bioscience laboratories to characterise

purified and recombinant proteins. This technique has also been used to measure molecular weight or to resolve mixtures of monomers,

oligomers and higher order aggregates. Using this method, molecular weight is calculated by creating a calibration curve of standard globular

proteins and comparing the elution time of an unknown to the standards. This is limited in that it is based on a stable relationship between

molecular weight, size, shape or hydrodynamic volume. This relationship varies significantly between proteins introducing unquantifiable

inaccuracies in all measurements made in this way.

Modern analytical systems are capable of
more than just sample detection with a
single concentration detector. The use of
multiple detectors including refractive index
(RI), ultraviolet (UV), light scattering (LS) and
viscometry (V) allows extensive
characterisation of protein samples in a more
absolute way than was previously possible. Rl
and UV both allow accurate concentration
measurements to be made. A combination
of these allows conjugation analyses to be
performed. Light scattering detectors allow
the measurement of molecular weight
without the need for column calibration.
Intrinsic viscosity is a measure of molecular
density and enables structural changes to be
assessed. A combination of light scattering
and intrinsic viscosity allows size (Rh) to be
calculated. This is called tetra detection. A
typical tetra detector analytical SEC system is
shown in the schematic in Figure 1.

This article describes some common
applications for which an advanced
analytical SEC system is used to characterise
proteins beyond the capability of a single
detector system.

Molecular Weight

Individual proteins have a very well

defined molecular weight. Once synthesised
within a cell, and following any post-
processing, such as cleavage or glycosylation,
a protein’s molecular weight will be fixed with
minimal variation.

Measuring the molecular weight of a novel
protein is interesting in itself. Different proteins
can have significantly different molecular
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Figure 1: Schematic of a tetra-detector analytical SEC system.
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Figure 2: SEC measurement of IgG showing monomer and dimer molecular weights.

weights, so measuring the molecular weight of
a purified protein is an excellent way of
confirming that the purified sample contains
the protein of interest. During production of a

recombinant protein, confirming the molecular
weight to be the expected value is a good
indicator that it is being produced correctly by
the host cell line.
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Measuring molecular weight is therefore of

interest both academically and practically as 1300.0 | [76.500
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. . . Figure 3: The molecular weight of each peak has been measured in this BSA sample. The molecular weights correspond to the
Oligomerisation State
monomer and dimer. The molecular weight of the third peak is slightly above that of the trimer suggesting it contains this as

The activity of any protein is defined by the well as higher order oligomers.

final structure or conformation that it takes.

Quaternary structure defines the final susceptible to this effect. Aggregates are
complex formed when multiple protein Aggregate Quantification often strongly held together by these

. B . forces meaning that their formation is
chains come together to form a single unit. Protein aggregation is a common result of 9

: : irreversible and that they continue to grow.
This too can be assessed by analytical SEC. many sample treatments, prolonged storage y 9

i indivi ; The activity of the proteins will be lost and
Proteins are individually monodisperse or freeze/thaw action. The structure of a y P

meaning their molecular weights are stable protein is held together by Van der Waals they may reach the point when they are no

across a peak as they elute from a SEC forces, hydrogen bonds and hydrophobic longer soluble.

column. As multiple proteins come interactions. Changing conditions can Protein aggregates tend to have a very high
together to form oligomers, the measured disrupt the delicate balance that holds the molecular weight and are often very
molecular weight will increase discretely structure together to reveal buried regions of polydisperse, as the complexes formed are

resulting in step changes of molecular weight very unlikely to become stable structures of

the polypeptide chain. These regions can

within the chromatogram. predictable sizes.

interact with those on other proteins to form
In the case of homo-oligomers, when a larger complexes of misfolded proteins. In SEC, aggregate peaks can sometimes
number of identical proteins come together, Hydrophobic regions are especially appear in the void volume of the column as
the measured molecular weight will be a
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aggregates (which will be inactive) by the
stable molecular weights across the peak.

The proportion of each can, of course, be

individually measured by the Rl or UV

Figure 4: The light scattering detector clearly identifies the high molecular weight aggregate while the concentration detector,

detector to determine the overall in this case R, can be used to calculate the proportion of the sample making up this material.

composition of the oligomer mixture.
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Rl detection | Viscosity detection Size and structural information
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Figure 5: Intrinsic viscosity for anylate cyclase toxin changes dramatically in the presence and absence of calcium. this technique. Figure 5 shows adenylate

cyclase toxin which changes its size and
intrinsic viscosity (IV or 1) significantly with a
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nevertheless, be measured along with their amount of aggregated material. It's large . i . .
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identified, making up 36% of the sample. Protein conjugates

detector, in which case the light scattering

effectively acts as a ‘first responder’ to the
When two different materials are eluting
from a column, combining two concentration
detectors, in this case, Rl and UV, allows the
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Figure 6: Derived chromatogram showing the calculated concentration of protein and detergent. of the detergent component of a membrane




protein complex can lead to degradation of
the protein and reduce the likelihood of
crystallisation. Characterising and optimising
the proportion of protein and detergent in a
purified membrane protein sample can
provide valuable insight into the likelihood of
crystallisation and the protein content of the
protein detergent complex (PDC).

Figure 6 shows a derived chromatogram
from a study of a membrane protein which
has been purified in the presence of
detergent lipids acting as a surrogate
membrane for the protein to bind to. The
derived chromatogram shows the calculated

protein and detergent concentrations which
have been calculated using a combination of
the Rl and UV detectors. From the analysis,
the mass of the complex, protein and
detergent can all be calculated identifying
the protein as a monomer conjugated with
detergent. As can be seen in the figure,
there is also a large excess of free detergent.

Conclusion

Analytical SEC has undergone significant
development since its inception. While
measurements of molecular weight and

purification were the original goals of the
technique, analytical measurements can now
be performed in a more direct way.
Furthermore, concurrent measurements of
concentration, intrinsic viscosity, size and
conjugation can also be performed making
advanced analytical SEC an invaluable tool
for many bioscience laboratories. In
combination, these techniques turn SEC into
a very powerful tool for the characterisation

of protein samples.



