
Introduction
Unintended use of an out-of-specification 

flavour mix in foods, beverages or nutritional 

formulations can lead to reduced consumer 

confidence and product losses. However, 

traditional screening using a trained sensory 

panel is expensive. Viable instrumental 

alternatives for determining acceptance are 

few due to various practical limitations:

•	 The gold-standard VOC analysis 

methods - gas chromatography (GC), gas 

chromatography-olfactometry (GC-O), 

and liquid chromatography (LC) - are 

slow and can struggle with the diversity 

of compounds in flavours. They also 

require significant sample preparation, 

including derivatisation for the short-

chain aldehydes and organic acids.

•	 Electronic noses are subject to significant 

drift, susceptible to contamination and 

false positive readings (e.g. from ethanol 

residues), and cannot identify individual 

flavour components.

•	 Traditional direct mass spectrometric 

(DMS) methods are too harsh or not 

selective enough to give unique spectral 

fingerprints. 

Selected ion flow tube mass spectrometry 

(SIFT-MS), on the other hand, is a direct 

mass spectrometry (DMS) technique that 

eliminates chromatography and applies 

very soft chemical ionisation. In doing so, 

SIFT-MS can selectively fingerprint samples 

of proprietory composition – without 

identification of flavour compounds – in less 

than one minute.

Recently, rapid geographical classification of 

Mediterranean olive oils [1] and Moroccan 

Argan oils [2] has been achieved using 

untargeted SIFT-MS analysis combined with 

multivariate statistical analysis. In this paper, 

a similar approach is applied to classify 

various commercial strawberry flavour 

mixes for intra-mix (i.e. batch) and inter-mix 

variations.

Method
1. The SIFT-MS technique

SIFT-MS [3,4,5] uses soft chemical ionisation 

(CI) to rapidly quantify VOCs to low parts-

per-trillion concentrations (by volume, pptV). 

The SIFT-MS technique is represented 

schematically in Figure 1. Eight individually 

selectable reagent ions (H3O
+, NO+, O2

+, O-, 

OH-, O2
-, NO2

- and NO3
-) are generated in a 

microwave discharge through moist or dry 

air. These eight reagent ions react with VOCs 

and other trace analytes in well-controlled 

ion-molecule reactions, but they do not 

react with the major components of air (N2, 

O2 and Ar). This enables real-time analysis 

of air samples at trace and ultra-trace levels 
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Figure 1. Schematic diagram of SIFT-MS – a direct chemical-ionisation analytical technique.



49

without pre-concentration, and results 

compare well with gas chromatography 

mass spectrometry (GC-MS) [6].

Rapid switching between reagent ions 

provides high selectivity, because the multiple 

reaction mechanisms can provide additional 

independent measurements of each analyte. 

The multiple reagent ions also help to 

remove uncertainty from isobaric overlaps in 

mixtures containing multiple analytes.

In this study, full mass scan analyses (SCAN) 

were carried out using a Voice200ultra 

SIFT-MS instrument (Syft Technologies, 

Christchurch, New Zealand). Only the NO+ 

reagent ion was utilised due to this ion being 

the least affected by the relatively high 

ethanol residues in the flavour mixes  (the rate 

coefficient for reaction of NO+ with ethanol is 

somewhat slower than H3O+ and O2+).

The NO+ reagent ion also has two other 

significant benefits for flavour analysis:

•	 NO+ reacts via multiple reaction 

mechanisms (association, hydride 

abstraction, electron transfer (ET) and 

dissociative ET), the relevance of which 

depends on the molecule’s ionisation 

energy and chemical functionality. 

This maximises selectivity both for 

conventional targeted analysis and for the 

fingerprinting approach applied here.

•	 NO+ is highly immune to moisture 

variations.

Since the flavour mixes analysed in this study 

are proprietory formulations, identities of 

specific components in the spectra were 

not provided. However, Latrasse [7] reviews 

of compounds that are likely to be present, 

which include alcohols, aldehydes, esters, 

furanone derivatives. Table 1 provides some 

examples of the reaction chemistry for 

several compounds identified in the flavour 

mixes.

2. Automated SIFT-MS analysis

In SIFT-MS, direct sample analysis facilitates 

high-throughput headspace analysis, 

because the rate-limiting chromatographic 

analysis is eliminated. In contrast to 

automated chromatographic techniques, 

which require rapid injection to achieve 

good peak shapes and temporal separation, 

SIFT-MS requires steady sample injection 

for the duration of the analysis. In SIFT-

MS, sample injection and analysis occur 

simultaneously. 

Automated headspace analysis was carried 

out using a SIFT-MS instrument coupled with 

a GERSTEL multi-purpose sampler (MPS; 

GERSTEL, Mülheim an der Ruhr, Germany). 

Samples were first incubated in a GERSTEL 

agitator prior to sampling of the headspace 

and subsequent injection into the SIFT-MS 

instrument through a GERSTEL septumless 

sampling head. A make-up gas flow (high-

purity N2) was also introduced through the 

sampling head, maintaining the standard 

sample gas flow (nominally 25 cm3 min-1) into 

the SIFT-MS instrument. 

The GERSTEL MPS2 autosampler was 

controlled using GERSTEL’s Maestro 

software. In addition to controlling the 

injection into the SIFT-MS instrument, the 

Maestro software’s PrepAhead function 

allows for optimal scheduling of pre-

injection preparation steps, such as syringe 

flush or incubation. This ensures that the 

highest sample throughput is achieved – a 

feature that is more important for SIFT-MS 

than for chromatographic methods.

3. Samples and analysis conditions

Table 2 summarises the powdered 

strawberry flavour samples supplied for 

analysis. For each flavour mix, five replicate 

samples (10 ± 1 mg) were weighed into 

20 mL headspace vials and incubated at 

50°C for 15 minutes. The headspace was 

sampled with a 2.5 mL headspace syringe 

and injected at a flow-rate of 10 µL s-1 into 

the SIFT-MS instrument’s inlet together with 

the make-up gas, giving a total flow rate of 

ca. 420 µL s-1. A blank was analysed between 

each set of replicates and subsequently 

subtracted from the following group. Flavour 

mixes and blanks were analysed in less than 

one minute per sample.

4. Multivariate statistical analysis

The SIFT-MS SCAN data (NO+ reagent ion 

only) were post-processed using multivariate 

statistical analysis to determine the ability of 

SIFT-MS to discriminate between the flavour 

mixes.

The multivariate statistical methodology 

Table 1. Example NO+ reaction chemistry for several potential components of the flavour mixes [7].

Flavour compound Reaction(s) of NO+ with the compound* Mechanism name

Furaneol C6H8O3 + NO+ → C6H8O3
+ (m/z 128) + NO 

[95%]

C6H8O3 + NO+ + N2 → C6H8O3.NO+ (m/z 158) 

+ N2 [5%]

Electron transfer

Association**

Methyl cinnamate C10H10O2 + NO+ → C10H10O2
+ (m/z 162) + NO 

[100%]

Electron transfer

Methyl hexanoate C7H14O2 + NO+ → C6H11O
+ (m/z 99) + NO 

[70%]

Hydride abstrac-

tion

C7H14O2 + NO+ + N2 → C7H14O2.NO+ (m/z 

160) + N2 [30%]

Association**

4-Decanolide C10H18O2 + NO+ → C10H18O2 .NO+ (m/z 200) + 

NO + N2 [100%]

Association**

* Mass-to-charge ratio of the product ion is shown in parenthesis; the percentage of product formed in a 
given reaction path is shown in square brackets.

** Nitrogen (or helium) carrier gas mediates formation of this product.  The ‘third body’ carries some 
excess kinetic energy away enabling binding of C6H8O3.NO+.

Sample type/name Batch Abbreviation for figures Labelling of replicates (5) in 

class projection plots

Flavour  

standard 1 (‘S1’)

Batch A

Batch B

Batch C

S1a

S1b

S1c

S1a-1 to S1a-5

S1b-1 to S1b-5

S1c-1 to S1c-5

Flavour standard 

2 (‘S2’)

Batch A

Batch B

Batch C

S2a

S2b

S2c

S2a-1 to S2a-5

S2b-1 to S2b-5

S2c-1 to S2c-5

Unknown 1 (‘U1’) U1 U1-1 to U1-5

Unknown 2 (‘U2’) U2 U2-1 to U2-5

Unknown 3 (‘U3’) U3 U3-1 to U3-5

Table 2. Strawberry flavour mix samples supplied for analysis, identification codes and abbreviations 
used in this article.
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utilised was Soft Independent Modelling 

by Class Analogy (SIMCA), which was 

developed by Wold in the 1970s [8]. SIMCA 

applies principal component analysis (PCA) 

to the whole dataset and to each of the 

classes with the end goal of creating a 

model that discriminates each class from the 

others. The Infometrix® Inc. (Bothell, WA) 

implementation of the SIMCA algorithm 

in the Pirouette software package was 

employed here.  

Prior to analysis using the Pirouette 

software package, SIFT-MS SCAN data 

were normalised (giving a sum of unity 

for all masses in the range), had the blank 

subtracted, and had masses with normalised 

signals less than 0.000005 removed.

Three types of output from the SIMCA 

analysis are presented in this report:

1. Class projections: These three-

dimensional plots show how each sample 

falls with respect to the three most important 

principal components derived from PCA on 

the entire data set. Each user-defined class 

shows the sample with the same color and a 

‘cloud’ representing the calculated space in 

which all samples of the class are expected 

to lie. Better class separations lead to more 

confident assignment of unknown samples 

to a predefined class, if a suitable one exists.

2. Interclass distances: These are a measure 

of the separation between classes. A value 

of three (3) is usually considered acceptable 

for class separation [9].  Sometimes the class 

separability indicated by these distances is 

not apparent in the three-dimensional class 

projection plot.

3. Discriminating power: This parameter 

helps variables to be identified that provide 

the most discrimination between the classes. 

A variable with larger discriminating power 

has greater influence on separating the 

classes than one with a small discriminating 

power. There does not appear to be a set 

threshold value above which a discriminating 

power is considered ‘good’, because these 

values vary strongly with interclass distance.

Results and Discussion
The SIFT-MS SCAN data (obtained using the 

NO+ reagent ion) for the strawberry flavour 

mixes are shown in Figure 2. The data in 

Figure 2 are the mean of the five replicate 

analyses, whereas the individual replicates 

are utilised for the subsequent statistical 

analyses in which these scans are utilised as 

‘flavour fingerprints’. 

 1. Evaluation of the ability to discriminate 

different batches of flavour standards

SIFT-MS scan data obtained using the 

NO+ reagent ion can be used to rapidly 

screen different flavour mix batches for 

acceptability. Figures 3 and 4 show the 

results obtained for flavour standards 1 

(S1) and 2 (S2), respectively, following 

multivariate statistical analysis with the 

SIMCA algorithm. The analysis reveals that 

the different batches of S1 are significantly 

less consistent than those of S2, both visually 

in the class projections and quantitatively 

from the interclass distance metric (Figures 

3 and 4).

2. Evaluation of the ability to discriminate 

between standards

Figure 5 shows an evaluation of the ability 

of SIFT-MS to discriminate between the 

different flavour mixes. For this statistical 

analysis, the three batches for each of 

flavour standard 1 and 2 are grouped 

together into their parent classes. The 

separation obtained is very large, confirming 

the visual differences observable in the 

scan spectra (Figure 2). Chemically, these 

differences arise from different compositions 

of the flavour mixes that then give rise 

to different product ion profiles in the 

SIFT-MS mass spectra.  The discriminating 

powers indicate the product ion m/z that 

discriminate these mixes most effectively.  

For example, it appears that 4-decanolide 

and methyl cinnamate are significant in this 

instance.

3. Evaluation of ability to classify unknowns

a)

b)

Figure 2. SIFT-MS scan data obtained with the NO+ reagent ion for the averaged replicates of each flavour 

mix batch: (a) low m/z region and (b) higher m/z region.

Figure 3. Evaluation of the variability of different batches (A, B, and C) of flavour standard 1 (‘S1’) using 
SIFT-MS in scan mode coupled with SIMCA multivariate statistical analysis.  Class projections, interclass 
distances, and the top 10 variables (m/z) for discrimination of the samples are shown.
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Three unidentified flavour mixes were 

supplied for evaluation using SIFT-MS.  

To identify the mix group to which they 

belong (if any), each of the ‘unknown’ 

samples (U1, U2, and U3) was added as 

a new class in the SIMCA analysis. The 

results obtained are summarised in Figure 

6. Based on the interclass distances 

determined (and confirmed visually in the 

class projection plot):

• Unknown 1 (U1) is another batch of 

flavour standard 1 (S1). The interclass 

distance between U1 and S1 is greater 

than 3, but as shown in Figure 3, the three 

batches (identified as S1a, S1b, and S1c) 

are all readily differentiable based on 

their volatile profiles. That is, there is a lot 

of variability in the batches of the S1 mix.

• Unknown 2 (U2) is identified as another 

batch of flavour standard 2 (S2), because 

the interclass distance is very small.

• Unknown 3 (U3) is extremely different 

from all other flavour mixes, as indicated 

by large interclass distances with all 

other samples. It represents a completely 

different (i.e. a third) flavour mix.

Assignments of unknown samples U1 

and U2 to S1 and S2, respectively, were 

confirmed by adding them to the S1 

and S2 data sets and reprocessing 

with SIMCA. Further confirmation of 

these assignments was provided by 

the customer. They likewise observed 

significant variation in S1 batches using 

gas chromatographic analysis and 

attributed it to degradation of the flavour 

mixes.

Conclusions
This study demonstrates that 

untargeted SIFT-MS analysis coupled 

with multivariate statistical analysis can 

rapidly screen strawberry flavour mixes to 

ensure that they fall within the required 

specification prior to their use in foods, 

beverages, and nutritional formulations. 

Automated static headspace-SIFT-MS 

analyses samples in less than one minute 

using a fingerprinting approach (full scan 

mode).

The combined instrumental and statistical 

approach utilised here has potential 

to facilitate enhanced quality control 

through rapid, economical screening of 

food ingredients.
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